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The statistical nature of convective turbulence is numerically studied in a shell model under the
assumption of neutrally stable stratification. The entropy (T?) cascade and the inverse transfer of
the kinetic energy are confirmed with flux and transfer functions. It is also shown that the entropy
and the energy spectra for different values of diffusivity agree well with universal functions involving
the power-law ranges derived by Bolgiano and Obukhov. The anomalous scaling of the exponents
of “structure functions” suggests the existence of temporal intermittency in convective turbulence,
which is similar to that in three-dimensional isotropic Navier-Stokes turbulence. The intermittency,
however, is not explained well by multifractal cascade models modified for convective turbulence.

PACS number(s): 47.27.Eq, 47.27.Gs, 47.27.Te

I. INTRODUCTION

Hard turbulence is fully developed convective turbu-
lence found by Libchaber and co-workers [1-4]. It has
several features that differ from those of traditional con-
vective turbulence (soft turbulence). Among these fea-
tures, the following is noteworthy: large-scale cell flow
starts just after fully developed turbulence sets in. Ac-
cording to experiments in the hard turbulence regime,
a frequency power spectrum of temperature fluctuations
recorded at the center of an experimental box contains
a power law range with an exponent close to —7/5 [3,4]
(what is called the entropy spectrum [5]). This power
law was derived by Bolgiano and Obukhov for thermal
turbulence in stably stratified fluid in 1959 (BO scaling)
[6]. L’vov, Procaccia and Zeitak, and Yakhot found the
same scaling theoretically [5,7,8]. In particular, L’vov ob-
tained BO scaling by assuming that entropy 72, which
is one of the conserved quantities in the inviscid limit,
is cascaded to smaller scales. In this way, in the central
region of the experimental box the convective turbulence
is assumed to be fully developed and isotropic.

How is the robust circulation flow surrounding the cen-
tral region maintained? From the results so far, we have
inferred that one of the maintenance mechanisms is the
energy supply from the central region. In this region
the entropy supplied from the surrounding region is con-
verted into kinetic energy through the entropy cascade.
This energy supply cannot be enough to maintain the
flow; however, it may at least play a role in rectifying the
flow.

Brandenburg studied the relation between BO scaling
and the direction of the energy transfer, introducing a
shell model on the basis of the Boussinesq approxima-
tion [9]. In his model, nonlinear terms in the evolution
equation of velocity are roughly divided into two groups.
One group causes the kinetic energy to transfer to smaller
scales and the other to larger scales. He showed that if
the latter group exceeds the former, BO scaling can ap-
pear, that is, BO scaling is closely connected to the in-
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verse transfer of kinetic energy. This conclusion is also
supported by our two-dimensional (2D) free convection
model based on the Boussinesq approximation equation
[10].

Little research has been carried out on intermittency
in convective turbulence. The only work we are aware
of has been on multifractal scaling of the entropy spec-
trum [4]. Wu et al. found that the frequency spectra of
entropy for different values of the Rayleigh number Ra
coincide well not by simple BO scaling but by multifrac-
tal scaling. The multifractal model predicts not only the
anomalous behavior of the scaling exponents for higher
order structure functions, but also the existence of the in-
termediate dissipation range in the energy spectrum [12].
Multifractal scaling is required to describe this interme-
diate dissipation range.

In this paper, we will study how entropy and kinetic en-
ergy are transferred in the wave-number space, focusing
in particular on the intermittent nature of the transfer
processes.

In Sec. II, we will review the 2D free convection model
on which our shell model is based. Bolgiano-Obkhov scal-
ing is also reviewed there. In Sec. III, we will modify the
shell model proposed by Brandenburg in order to bring it
close to our 2D model of the central region. On the other
hand, Brandenburg tried to model the whole system, in-
cluding the central region and surroundings. Moreover,
the temperature field is forced at all scales by the back-
ground linear stratification. Thus, interpretation of the
spectra requires some care. However, the basic results
are not affected crucially and our work is based strongly
on Brandenburg’s results. Through our modified model,
the universality of BO scaling is shown. The direction of
energy and entropy is also examined in terms of transfer
and flux functions.

In Sec. IV, the intermittent nature of temperature and
velocity dynamics are examined by structure functions
and compared with multifractal cascade models such as
the random-( model [14]. In the final section, we con-
clude with some remarks.
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II. PRELIMINARY
A. Free convection model

To examine the characteristics of fully developed con-
vective turbulence, we proposed a model situation where
the central region is separated from surrounding flows
such as boundary and mixing layers [10]. The effect of
the surroundings on the central region is taken into ac-
count only through the forcing of temperature dynamics.
In fact, entropy seems to be supplied to the central region
by random intrusion of plumes. We also assumed neu-
trally stable stratification and homogeneity. These as-
sumptions are supported by the 3D experiments and our
2D simulations [11]. The model is based on the follow-
ing 2D Boussinesq approximation equations with several
terms representing the assumptions:

%—f = —u-VT +kV3T + F, (1)

ou 2
E:—u-Vu—Vp-{—uVu—}—agT-{—D, (2)
V. -u=0, (3)

where &, v, a, and g are the thermal diffusivity, the kine-
matic viscosity, the volume expansion coefficient, and the
gravitational acceleration, respectively, and F' and D de-
note forcing and drag. Only the temperature field is
forced at large scales. The energy sink, D is also added
only for large scales to keep the system statistically sta-
tionary.

In the inviscid limit, this system conserves the entropy
S = [3T?dV and the total energy & = [(3|ul® +
agyT)dV , where the buoyancy acts along the y direction.
Numerical simulations showed the existence of Bolgiano-
Obkhov scaling due to the entropy cascade and the in-
verse transfer of kinetic energy. It was also shown that
both entropy and kinetic energy are distributed isotropi-
cally at small scales, including inertial range, even though
the system has buoyancy. This supports Kolmogorov-
type scaling.

B. Bolgiano-Obkhov scaling

Here we will summarize BO scaling. As a generaliza-
tion of the Kolmogorov hypothesis to the case of neutrally
stratified thermal turbulence, we assume that statistical
natures are governed by the parameters €, ag, <, and v,
where €g is the entropy dissipation rate. Using this hy-
pothesis and applying simple dimensional analysis, the
entropy and energy spectra are written in the following
forms:

S(k) = &7/%(cg) "/ 4/ F (k/ke,), (4a)

E(k) = v'/3(ag)*ey/*G (k/ka). (4b)

Here, F(k/kg,) and G(k/kq) are expected to be univer-
sal functions, although they may depend on the Prandtl
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number Pr=v/k. Dissipation cutoff wave numbers kg,
and kg are given by

ko, = K~ /8(ag) %€/, (5a)

ka = v™5/%(ag)/1e)/®. (5b)
In the inertial range, the spectra depend only on €y, ag,
and k; then

S(k) = Cs(ag) /%y *k~7/5, (6a)
E(k) = Cg(ag)¥/5e/*k=11/5, (6b)

where Cs and Cg are also expected to be universal con-
stants. It should be noted that this phenomenological
theory does not give the direction of the energy transfer
in the wave-number space.

III. MODEL EQUATIONS AND BASIC RESULTS

In this section we present an improved shell model for
convective turbulence and basic numerical results. The
model is constructed in a discretized wave-number space
where the nth wave number is defined by k,, = koh™(1 <
n < N), and ko is the wave number corresponding to
the largest possible scale in the system. In this paper,
we use the customary values kg = 1 and h = 2. Scalar
variables u,, and T}, represent « and T on the nth shell in
the wave-number space. The entropy and kinetic energy
spectra are therefore defined as S(k,) = T:2/(2k,) and
E(ky) = u2/(2k,). Each evolution equation for u, or T,
is assumed to be coupled quadratically with the nearest
neighbors in the wave-number space. Then the evolution
equations for u, and T, are

dT,

2 = Fr(kn) = <k2To + fon,a, (7
dun 2 1z
> = Fy(kn) — vkiu, + agT, — Ef‘sn,iun
(z: 1727374)v (8)
where

Fr(k,) =k, z @ijUntilnig,

i,j=0,%+1

Fu(kn) =kn Z bijun+iun+j-

i,j=0,%1

(92)
(9b)

Here, fd,,4 is the forcing term and —fé,w-u,i/lc,zL is the
drag term. We used f = 10% and f = 0.5. Both the
forcing and the drag are adopted for keeping the system
statistically stationary. We can put ag = 1 without loss
of generality. The coupling coefficients a;; and b;; are
determined by the conditions where the entropy and the
total energy are conserved in the inviscid limit without
forcing and drag:

d 1
T > ET,E =0, (10)
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N
ui — agZTnun = 0.

n=1

(11)

Then we obtain the following forms:

FT(kn) = Alkn(un—lTn—l - hunTn+1)

+A2kn(unTn—1 - hun+1Tn+1)a (123)
F, (k) = Blk"(ui_l — htptUnt)
+Bakn (Untn_1 — hu2 ), (12b)

where A, A, By, and B, are arbitrary constants. Bran-
denburg indicated that the ratios |A2/A;| and |B2/B|
are related to the relative importance of entropy and
kinetic energy transfer. He reported that Kolmogorov
scaling was seen when the ratio |By/B;| is some criti-
cal value (around 0.4). We therefore used B; = 0.01,
A1 = A = By = 1; this choice is the same as he used.

We deal with the interactions only with the nearest
neighbors. However, even if the interactions with the
next-nearest neighbors are also included, the numerical
results are not greatly affected.

In our calculation, we treat the case k = v(Pr = 1).
We mostly used the values of the parameters Kk = v =
107, N = 40. Time marching was performed by the
fourth-order Runge-Kutta method with time step dt =
2x1077. Statistical quantities are obtained by averaging
over 1.3 x 10° steps.

Figure 1 shows the entropy and energy spectra S(k)
and E(k). We see that the power-law behavior of the
spectra agree well with BO scaling: S(k) o k~7/% and
E(k) o k~1Y/5. To confirm the agreement with BO scal-
ing, we plot k7/5S(k) and k''/®E(k) in an inset of Fig. 1.
In the wave-number range 102 < k < 107 these values
are not strictly constant but decrease slightly as the wave
numbers increase. This is because the actual powers of

S(k) and E(k) are —1.42 and —2.23. Both of the dif-
ferences between these values and the powers predicted
by BO scaling are only 1.4% and the spectra satisfy BO
scaling very well. In addition, both of the spectra have
steeper slopes, —1.69 and —2.42, than those predicted
by BO scaling in the wave-number range 107 < k < 10°.
The straight lines in the inset correspond to these pow-
ers. When we used hyperviscosity, this range disappeared
and only the BO power law was observed. Here we only
imply that this extra range is related to the dissipation.
The details will be reported elsewhere.

Figure 2 shows the normalized spectra F(k/ke,) and
G(k/kq) for different values of x and v. The entropy
and energy spectra for different parameter values coin-
cide well with BO scaling. Therefore, this figure sup-
ports BO scaling and the existence of universal functions,
although the universal functions should depend on the
Prandtl number Pr. As mentioned in Sec. I, Wu et al.
reported that the frequency spectra coincide well over the
whole range by multifractal scaling, by not by BO scal-
ing, for extremely large Rayleigh numbers [4], although
this does not hold for our model. As a matter of fact, we
tried to compare the spectra with multifractal scaling,
but failed. Though only the inertial range is, of course,
fitted well by both BO scaling and multifractal scaling,
the spectra that included the dissipation range were not
fitted well with the latter. So far we cannot clearly ac-
count for the failure of multifractal scaling in our model.
Here we only suggest that shell models may not repro-
duce the dissipation range clearly. For example, the shell
model for the 3D Navier-Stokes turbulence by Yamada
and Ohkitani does not show exponential decay such as
E(k) ~ exp(—ck), although our model contains the ex-
ponentially decaying range.

The entropy and energy flux functions are de-
fined as Hs(kn) = - E?:l FT(kl)T.,, and HE(kn) =
— Z?:l F,(ki)u;. From a dimensional consideration, the
flux function of the kinetic energy obeys the following

10° [ ~
~~ -10p
é 10
[84)
2 102} ]
w

107 i

10° 10®> 10* k}oé 10® 10"

FIG. 1. Entropy (dashed line) and energy spectra (solid
line) for Kk = v = 107'* with N = 40. The straight lines
show the slopes predicted by BO scaling. The inset shows
kr/®S(k,) (dashed line) and ki'/°E(k,) (solid line). The
straight lines correspond to the powers —1.69 and —2.42.
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FIG. 2. The normalized spectra F(kn/ke,) (upper) and
G(kn/ka) (lower) for k = v = 107 *(e), 107'%(0), 1078(+),

107%(x). The energy spectra are divided by 10'°. The solid
lines show the slopes predicted by BO scaling.
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power law in the inertial range [5]:
Mg (k) o< k=475, (13)

Figure 3 is the plot of log,, |IIg (k)| vs log,o k. The flux
function of the kinetic energy agrees with the power-law
predicted by (13).

In our 2D simulations we observed the entropy cascade
and the inverse transfer of kinetic energy. In this shell
model the same phenomena are seen. As shown in Fig. 4,
the energy flux is negative and the entropy flux is posi-
tive and constant over the wave-number range where the
spectra obey BO scaling. These results indicate the pres-
ence of both the entropy cascade and the inverse transfer
of kinetic energy in the inertial range. It should be noted
that kinetic energy is not cascaded but transferred to
larger scales.

Buoyancy plays an important role in the energy trans-
fer process. We will explain this role using the evolution
equation for kinetic energy:

i@% = Ti(kn) + L(kn) + D(kn) — klsf‘sn,iE(kn)
(i=1,2,3,4). ’ (14)

Here, Tg(kn), L(k.), and D(k,) are the kinetic energy
transfer function, the linear term due to the buoyancy
effect, and the dissipation term, respectively. They are
defined as Tg(k,) = Fu(kn)tn, L(kn) = agTpu,, and
D(k,) = —vkZuZ. Dissipation is negligible in the iner-
tial range, so that the transfer function and the linear
term are balanced on average; (Tg(kn)) = (—L(kn)) (see
Fig. 5). In addition, in the inertial range the value of
the transfer function is negative, and that of the linear
term is positive. These indicate that potential energy is
converted to kinetic energy on average through buoyancy.

IV. INTERMITTENT NATURE
OF STRUCTURE FUNCTIONS

In this section, we will examine the intermittent nature
of the convective turbulence in terms of structure func-

10°F

HE(kn)

10—5_ . 1

kn

FIG. 3. A plot of log|IIg(kn)| vs logk for k = v = 107'* .
The solid line shows the slope —4/5.
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FIG. 4. Entropy and energy flux functions IIs(k») (o) and
Mg (k) (o) for Kk = v = 10714

tions. We also try to extend multifractal cascade models
to the convective turbulence.

The scaling exponents of the structure functions, {7 (p)
and (,(p) are defined as follows:

(6T (r)P) rCT(P),
(Su(r)P) oc r¢e®),

(15a)
(15b)

where 6T (r) = |T(z+7)—T ()|, du(r) = |u(z+r)—u(x)|,
r is the spatial difference of the length in the inertial
range, and () indicates time average. From BO scal-
ing, 8T and du are assumed to be determined by ag, €,
and 7, so that the structure functions have the following
forms:

(8T (r)P) o (ag) /%" *r?/®  (r(p) = p/5,
(Su(r)P) « (ag)®/3eE/*r3/5 ¢, (p) = 3p/5.

(16a)
(16b)

10—300 \21 |4| ...16 ISJ "
10 10° 107 107 10
n
FIG. 5. The kinetic energy transfer function |7z (kn)| (o)
and the linear term |L(k.)| (A) for k = v = 107'*. In the
inertial range, {L(kn)) ~ — (Te(kn)) > 0.
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We have calculated the temperature and velocity struc-
ture functions, (|T,|P) and (|u,|?), for positive integers
up to p = 12. Figure 6 shows the plots of (|T,,|P) and
(|un|?) with k, for p = 10. Both of the structure func-
tions have less steep slopes than those predicted by BO
scaling. As shown in Fig. 7, the scaling exponents of
the structure functions {r(p) and (,(p) are smaller than
those expected from BO scaling. The behavior of the
scaling exponents similar to ours is reported in three-
dimensional isotropic turbulence; the scaling exponents,
because of intermittency, are smaller than those expected
from Kolmogorov scaling.

The convergence of the exponents of the structure
functions should be confirmed carefully especially for
higher orders. We calculated the probability distribu-
tion functions (PDF's) of temperature differences T, at
several scales to estimate the convergence of the struc-
ture functions. Figures 8 and 9 show the PDF P(T,)
and the function W,(T,,) = TFPP(T,) for p = 10 and
n = 17 at the middle of the inertial range. As shown
in Fig. 9, even for p = 10 we can see clear peaks and
decaying tails in W,(T,). A similar tendency was seen
at other scales n = 10,14,20,24. For p > 10 the peaks
are almost at the cutoff values of W,(7,) and sufficiently
decaying tails are not seen. The PDF's are fitted well by
stretched-exponential forms P(T,) = P(0) exp(—c|T,|°)
(see Fig. 8). In terms of these approximated PDFs,
we also estimated the structure functions and their expo-
nents. The results are also shown in Figs. 6 and 7. We see
that both of them show values not very different from the
values obtained from direct calculation. In addition, we
have calculated the exponents for averages over another
1.2 x 108 steps, although the results are no different from
those shown in Fig. 7. Based on these considerations,
we believe that the exponents of the structure functions
converge enough at least for p < 10.

The scaling exponents for the velocity structure func-
tions calculated with a shell model for isotropic turbu-

T, 2 T ARALL e ey

IOZO:

10° 10°

FIG. 6. Entropy and kinetic energy structure functions
|Tn|™ (o) and |us|*® (e) for Kk = v = 10~%. The solid lines
indicate the BO scaling law. The broken lines with slopes 5.10
(lower) and 1.28 (upper) are least-squares fits. The structure

functions estimated from the stretched exponential fitting of
PDF (x).
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CT(p) . Cu (p)

FIG. 7. The scaling exponents of the structure functions
¢r(p)(o) and Cu(p)(e). The solid lines are the BO prediction
¢r(p) = p/5 and Cu(p) = 3p/5. The error bars of the scaling
exponents are estimated from least-squares fits of the struc-
ture functions. The scaling exponents estimated from the
stretched exponential fitting of PDF (x). The dotted lines
are least-squares fits up to p = 12 in terms of (22a) and (22b)
with z = 0.116. The broken lines are least-squares fits up
to p = 12 in terms of (24a) and (24b) with z = 0.178. This
result is obtained for k = v = 107 %,

lence are well fitted with the random-3 model [13]. We
also try to fit the exponents by the random-3 model.
Multifractal cascade models such as the random-3 model
assume the kinetic energy cascade. Thus we assume the
entropy cascade in order to apply these cascade models
to our shell model. That is, we assume that the rate of
entropy transfer is constant between the length scales r,,
and Tn+1,

UnT? /Tr = Brs1Uns1T2 41 /Tnt1s (17)

where r, = 277, and 3, is the rate of active regions. In

Or , . ; :

-15 -10 -5 0 5 10 15
Ti7/o
FIG. 8. PDF (solid line) and stretched exponential fitting
(broken line) of P(Ti7) for k = v = 10~ . PDF is normalized
by the standard deviation o = (|Ty|?)*/2.
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20000¢ 1

Wio(T17)

10000

0 : :
-15 -10 -5 10 15

FIG. 9. Wio(Ti7) for & = v = 107 (solid line). The
broken line is W10(T17) corresponding with the stretched ex-

ponential form in Fig. 8. The same scale as in Fig. 8 is used
for the abscissa.

the active region, the transfer process mainly occurs. In
addition, we assume local balance of the nonlinear term
with the buoyancy term in (8),

agTy, ~ u2 /r,. (18)

This assumption is supported by our shell model and 2D
simulations (see Fig. 5). From these assumptions, T}, and
u, are estimated as follows:

—-2/5
T, ~ | [ & /s, (19a)
i=1,n
-1/5
Up ~ H Bi r3/5. (19b)
1=1,n

For simplicity, assuming that there are no correlations
among different steps of the fragmentation process, we
obtain

(ITal?) = ra/® g2/, (20a)
(lunf?) = 30/ (8177/°) . (20b)

If we use the probability distribution P(3) written in
the form

P(B) =26(8—a)+ (1 —-2)6(6 - b), (21)

the exponents of the structure functions are given as fol-
lows:

1
Cr(p) = £p — loga(2a ™/ 4 (1 — 2)b1=2/5), (22a)

3
Gup) = gp—logy(@al P/ 4 (1= 2)b17/%),  (22b)

where a and b are fragmentation parameters with proba-
bility z and 1 — x, respectively. In the original random-g
model, a = 0.5 (velocity sheets), b = 1 (space-filling dis-
turbance), and z is the only free parameter [14].

Figure 10 shows the deviations in scaling exponents
from the values of BO scaling, Alr(p) = £p — (r(p)
and Alu(p) = 2p — Cu(p). The broken lines are least-
squares fits up to p = 12 in terms of (22a) and (22b)
with £ = 0.116. Other parameters are fixed at a = 0.5
and b = 1 following the original random-3 model. This
fitting does not work well. Even though we use a, b, and =
as free parameters, we cannot fit both scaling exponents.
Only {r(p) or ¢, (p) is fitted with this modified random-g3
model. The value of parameter b, however, is larger than
unity, that is, z = 0.780, a = 0.788, and b = 1.723, when
¢r(p) is fitted. The fits up to p = 10, where the scaling
exponents converge enough, show similar tendencies.

We consider another modification of the random-8
model. Here, instead of the relation (18), we assume
the following one:

agT, =~ Ny, (23)

where 7, is a function of k, = 1/r,. This relation is
based on the fact that both deviations of the exponents
from those predicted by BO scaling are roughly the same
(see Fig. 10). In the first model, the nonlinear term is as-

R

£
<
C
=
>
<

Oﬁ

0

p

FIG. 10. The deviations in the exponents of the struc-
ture functions from the BO values, Alr(p)(c) and Alu(p)(e).
The error bars of the scaling exponents are estimated from
least-squares fits of the structure functions. The dotted and
broken lines are least-squares fits up to p = 12 in terms of
(22a) and (22b) with z = 0.116. The solid line is least-squares
fits up to p = 12 in terms of (24a) and (24b) with z = 0.178.
This result is obtained for Kk = v = 1074,
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sumed to balance with the buoyancy term, which acts as
the energy source on average. On the other hand, in this
model, only part of the nonlinear term is assumed to bal-
ance with the buoyancy term. This may be understood
easily if we introduce the “eddy viscosity”: n, = —v, k2,
that is, the local energy input due to the buoyancy dom-
inates energy transfer due to the nonlinear term. This
situation is possible only when the energy is transferred
to larger scales. Otherwise, the mean flux exceeds the en-
ergy supply, since the latter decreases with scale and the
former is the sum of the latter over the scales from r¢ to
7n, the scale considered. It should be noted that the eddy
viscosity is positive. Kraichnan derived the expression
for the negative eddy viscosity within a closure frame-
work for the energy inverse cascade of two-dimensional
turbulence [15]. In his theory, the eddy viscosity is due to
the nonlocal interactions, effects of much smaller scale.
However, our eddy viscosity is not explicitly related to
the energy inverse transfer, but only introduced to bal-
ance the local energy supply due to the buoyancy term;
shell models deal with only local interactions. Thus our
eddy viscosity is special but yields fascinating results. It
should be noted that our eddy viscosity, too, is derived
from nonlocal interactions as mentioned above.

From dimensional considerations, the coefficient of the
eddy viscosity, v, should vary as 7'78/ 5+5, where § repre-
sents the small deviation from the BO scaling. Adopt-
ing the procedure in the derivation of (22a) and (22b)
with the assumptions (17) and (22w), we obtain an-
other expressions for the exponents of the structure func-
tions:

1 1
Cr(p) = (g + §5>p - logz[mal_l’/?’ +(1- m)bl‘P/3],

(24a)
Cu(p) = (g - ;5);7 - logz[xal—P/S +(1— J:)b1~p/3]‘
(24b)

We set § = 0 and fit both of the scaling exponents.
The solid line in Fig. 10 is the least-squares fits with
z = 0.178 (a = 0.5 and b = 1) by (24a) and (24b). This
second model appears to work fairly well in comparison
to the first one. This means that the eddy viscosity is an
excellent model as the first approximation, though it is
only introduced heuristically.

This model is not sufficient to fit both the scaling ex-
ponents in detail. In particular, it fails to explain the
behavior of the low order moments. If § = 0, this
model predicts that both deviations of the exponents
from BO scaling, A{r(p) and A, (p), are the same and
log,[za'~P/3+(1—2)b'~P/3]. Asshown in Fig. 10, Al (p)
is somewhat larger than A{z(p) for large p. On the other
hand, for small p, the former is somewhat smaller than
the latter. As a result, even if we treat § as a fitting pa-
rameter, both of the exponents {r(p) and (,(p) cannot
be fitted accurately with Egs. (24a) and (24b).

We cannot explain clearly why the second model is
better than the first model. In the second model, in
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terms of the eddy viscosity, the temperature and veloc-
ity structure functions have the same dependence on the
fragmentation parameter 3. As a consequence, it pre-
vents strong underestimation of the scaling exponents
for velocity structure functions. Anyway, neither of the
modified random-3 models can sucessfully explain the in-
termittency in our shell model in the strict sense. In our
shell model for convective turbulence, there exist inverse
transfer of kinetic energy and large fluctuations of the
flux functions, which sometimes cause a locally negative
entropy flux. These coupled transfer processes are more
complicated than the case of the 3D Navier-Stokes tur-
bulence, so that the probability distribution P(3) cannot
be given by (21). This may be one of the reasons why
the intermittency of the entropy and the energy dissipa-
tions observed in our shell model cannot be explained
successfully by simple multifractal cascade models.

V. DISCUSSION AND CONCLUDING REMARKS

We have introduced an improved shell model for con-
vective turbulence to study its statistical nature. Al-
though our shell model has limitations compared with
direct numerical simulation, it can reproduce the basic
statistical quantities such as spectra and flux. Therefore,
our model is helpful in understanding convective turbu-
lence.

We confirmed that the energy and entropy spectra of
our shell model are explained well by BO scaling. That
is, convective turbulence is governed by the entropy cas-
cade. Through the cascade process potential energy is
converted into kinetic energy on average at every scales
in the inertial range. A little of the kinetic energy is
transferred to the dissipation range, but most of that is
transferred to the larger scales. We infer that this inverse
transfer of kinetic energy may play an important role in
maintaining the robust circulation flow.

We have examined the intermittency appearing in the
anomalous scaling of structure functions. In shell models
the fractal is not substantial in the strict sense, because
shell models give no information about physical space.
Thus we should carefully compare the temporal “inter-
mittency” obtained by the shell models with the multi-
fractal cascade models.

The intermittency observed in the shell model for the
3D Navier-Stokes (NS) turbulence was well explained by
the random-3-model [13]. We therefore introduced two
modification of the multifractal cascade model for con-
vective turbulence and compared them with the tempo-
ral intermittency in the shell model. One model assumes
the local balance of the buoyancy term with the nonlin-
ear term in the equation for velocity. It cannot fit well
both the scaling exponents of the structure functions for
temperature and velocity. The other model assumes the
local balance of the buoyancy term with the eddy viscos-
ity term. Both deviations in the scaling exponents from
the BO values are roughly the same, so that the sec-
ond model works much better than the first as the first
approximation. However, the latter model also does not
satisfactorily explain the details of the anomalous scaling
for the structure functions. Although we do not clearly



51 ENTROPY CASCADE AND TEMPORAL INTERMITTENCY IN A . ..

understand the reasons for these failures so far, we point
out the following aspects. In construction, our modified
multifractal models do not explicitly deal with the direc-
tion of the energy flow. As discussed by Brandenburg,
the inverse transfer of energy is essential for BO scaling.
Then the direction of the energy flow might be considered
in the modification of cascade models. Second, we can-
not confirm that simple cascade models like ours really
represent the anomalous scalings of structure functions
even for temporal intermittency.

We also suggest that these failures might be due to
stronger intermittency than that of NS turbulence. For
shell models of NS turbulence, Jensen, Paladin, and
Vulpiani [13] concluded that the largest Lyapunov expo-
nents correspond to the temporal intermittency of the en-
ergy dissipation. Yamada and Ohkitani showed that Lya-
punov functions for different values of dissipation agree
with a function by rescaling with Kolmogorov entropy
and Kaplan-York dimensions [16]. This suggests that
the cascade process is governed by a simple scaling as a
whole, including temporal intermittency. On the other
hand, our shell model for convective turbulence does
not possess such a similarity in Lyapunov functions as a
whole [17]. However, if some of the largest Lyapunov ex-
ponents are removed and the same rescaling procedure is
applied for the rest, the similarity is recovered. It should
be noted that the number of largest Lyapunov exponents
removed is dependent on . This suggests that for con-
vective turbulence the intermittency is relatively stronger
than that in NS homogeneous turbulence.

We also found another difference in power-law range
between the inertial and dissipation ranges [18]. This
extra range seems to possess a counterpart in the exper-
imental results. As a matter of fact, for extremely large
Rayleigh numbers the frequency spectrum of the entropy
contains a complicated intermediate-dissipation range. It
should be noted that this range is not scaled by the sim-
ple BO scaling [4]. We also tried to compare the spectra
with a multifractal scaling, but they were not well fitted.
The remarkable deviation from multifractal scaling is due
to the existence of the precise length of extra range, that
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is, the wave number at which the power law predicted by
BO scaling is replaced by extra range is scaled with « in
the same way as kg,. Thus, only BO scaling works well
even for the range above the dissipation range. However,
this domination of Kolmogorov-type scaling over multi-
fractal scaling is common to the shell model for the 3D
NS turbulence we have studied. We have not explained
clearly the relation between the intermediate-dissipation
range and our extra range. In this sense, the intermit-
tency examined in this paper does not seem compatible
with experimental observations and multifractal scaling
theory.

The extra range extends over two decades. The pow-
ers of the spectra in the extra range are close to the
powers —5/3 and —7/3 for S(k) and E(k), respectively.
The Boussinesq equation is unchanged under the follow-
ing transformation in the inviscid limit: & — Az, T —
AT, t — A(1-h)/2¢. Then, for h=1/5 we obtain the
power laws predicted by BO scaling. On the other hand,
the power laws in the extra range correspond to h=1/3.
Although, as mentioned above, our spectra are not fitted
well by multifractal scaling, scaling relations intrinsic to
the Boussinesq equation are exhibited there. The multi-
fractal scaling theory is based on the existence of these
kinds of scaling relations. Therefore, we believe that our
model contributes toward an understanding of the inter-
mittency in turbulence.

Anyway, the intermittency in our model has not yet
been compared with that in real convective turbulence.
A study by wavelets on the intermittency of the two-
dimensional model cited in Sec. II is under way. We will
report the results in forthcoming papers.
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